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Abstract

Large-scale vision-language models like CLIP have demonstrated impressive open-
vocabulary capabilities for image-level tasks, excelling in recognizing what objects
are present. However, they struggle with pixel-level recognition tasks like semantic
segmentation, which additionally require understanding where the objects are
located. In this work, we propose a novel method, PixelCLIP, to adapt the CLIP
image encoder for pixel-level understanding by guiding the model on where, which
is achieved using unlabeled images and masks generated from vision foundation
models such as SAM and DINO. To address the challenges of leveraging masks
without semantic labels, we devise an online clustering algorithm using learnable
class names to acquire general semantic concepts. PixelCLIP shows significant
performance improvements over CLIP and competitive results compared to caption-
supervised methods in open-vocabulary semantic segmentation. Project page is
available at https://cvlab-kaist.github.io/PixelCLIP
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Figure 1: Illustration of different approaches for open-vocabulary semantic segmentation. In
contrast to existing methods utilizing (a) pixel-level semantic labels [1, 2, 3, 4, 5, 6] or (b) image-level
semantic labels [7, 8, 9, 10, 11, 12], we leverage unlabeled masks as supervision, which can be freely
generated from vision foundation models such as SAM [13] and DINO [14].

1 Introduction

Semantic segmentation is a fundamental task in computer vision where the goal is to identify class
labels for each pixel within the given image. However, segmentation datasets often require extensive
human effort to obtain densely-annotated semantic labels, limiting their scalability. In this regard,
recent advances in large-scale pre-trained vision-language models, e.g. CLIP [15] and ALIGN [16],
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Figure 2: Visualization of masks from vision foundation models. We visualize the masks generated
by SAM [13] and by clustering image features from DINO [14]. Although such models can freely
generate fine-grained masks, the resulting masks can be too small or incomplete to have semantic
meaning. To address this over-segmentation issue, we employ online clustering [18] of the masks
into semantically meaningful groups defined globally for given images.

have facilitated open-vocabulary semantic segmentation [1, 3, 2, 17, 4, 6], which aims to generalize
semantic segmentation into unbounded range of classes. Despite showing remarkable generalization
capabilities, they still require pixel-level semantic labels for leveraging the image-level pre-trained
vision-language models for semantic segmentation.

Recently, several studies [11, 12, 7, 8] have pioneered open-vocabulary semantic segmentation
without densely-annotated semantic labels. These studies often utilize image-level semantic labels,
such as image captions, to enhance the pre-trained vision-language models like CLIP for semantic
segmentation. However, image captions typically provide information about what is in the image, but
without where it is. Since CLIP is already effective in recognizing what the objects are, this causes
models to only implicitly learn object locations, leading to sub-optimal performance or requiring
millions of image-caption pairs to compensate for this weak supervision [8, 7]. Instead, we focus on
informing CLIP about where objects are located to address the missing information.

In this study, we propose a novel approach to achieve open-vocabulary semantic segmentation without
leveraging semantic labels, but through guiding the pre-trained vision-language models, such as CLIP,
on where to look. We leverage recent vision foundation models (VFMs), such as DINO [14] and
SAM [13], to partition images into fine-grained regions to indicate where to look. Consequently, we
explore methods to effectively leverage these masks for fine-tuning the image encoder of CLIP.

In contrast to existing works that leverage semantic labels [6, 19, 7], we do not have any captions
or class names that can be fed to the text encoder of CLIP. To leverage its knowledge, we devise a
method that employs prompt learning [20, 21] on the text encoder of CLIP to construct learnable
classes. Setting the learnable classes as a centroid, we propose applying the online clustering
algorithm [18, 22] along the given masks to gather them into semantically meaningful groups, as
shown in Fig. 2. We keep these learnable classes global across the entire images, which guides the
learnable classes to contain the general semantic concepts. Despite the absence of semantic labels,
our method is able to jointly leverage the image encoder and text encoder of CLIP during training,
successfully achieving dense open-vocabulary recognition.

Our framework, called PixelCLIP, achieves significant improvements to CLIP, on average of +16.2
mIoU in open-vocabulary semantic segmentation. Moreover, despite not using any semantic labels,
PixelCLIP shows competitive performance in comparison to image-level supervised methods using
captions [7, 9, 10], demonstrating the effectiveness of unlabeled masks for. We further show the
effectiveness of PixelCLIP for classifying masks from various open-vocabulary segmentation models,
which can be simply done by replacing the CLIP within existing methods. We also provide extensive
ablation studies to validate our choices, with a detailed analysis of our method.

We summarize our contribution as follows:

• We propose a novel formulation of learning from images without semantic label for open-
vocabulary semantic segmentation by leveraging masks generated from DINO and SAM to
fine-tune vision-language models.

• We propose to globally cluster semantically similar masks by employing an online clustering
algorithm, while learning class prompts for representing semantic clusters.

• We demonstrate significant gains in open-vocabulary semantic segmentation, even surpassing
methods leveraging image-level semantic labels, and provide thorough ablation studies with
analysis to validate our framework.
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2 Related Work

2.1 Open-vocabulary semantic segmentation

Open-vocabulary semantic segmentation [2, 23] aims to label each pixel within an image into
an unbounded range of classes. In this regard, recent works [1, 17, 2, 6, 24] aim to generalize
to classes unseen during training through leveraging pre-trained vision-language models, such as
CLIP [15]. Despite their remarkable performance, they leverage per-pixel semantic labels during
their training, which requires expensive cost to annotate. Instead, we focus on the weakly-supervised
setup, where the goal is to zero-shot transfer to segmentation task without densely-annotated class
labels [11, 12, 25, 5, 26, 7, 27], utilizing image-level labels as supervision or even no labels at all.

In this regard, recent studies [11, 12, 25, 5] leverage image caption as supervision. GroupViT [11]
and ViL-Seg [12] are pioneering works for identifying groups or clusters emerging from captions.
Along with the advance of vision-language models, SegCLIP [9] and TCL [7] leverage pre-trained
CLIP and learn additional decoder modules to learn dense vision-language alignment. PACL [8]
learns additional embedding layers to enhance the patch-level alignment in vision-language models
and SAM-CLIP [10] attempts to merge SAM [13] and CLIP [15] into a unified model by additionally
leveraging unlabeled mask data from SAM. Apart from these approaches, we avoid employing any
semantic labels [26, 28], but leverage vision foundation models to obtain masks as a source for super-
vision to fine-tune the CLIP image encoder for achieving open-vocabulary semantic segmentation.

2.2 Fine-tuning vision-language models for dense prediction

Recent large-scale pre-trained vision-language models have shown its effectiveness for jointly under-
standing images and language [29, 15, 16]. Notably, CLIP [15], trained with web-scale image-caption
pairs, has been widely popularized for transferring its open-vocabulary recognition capabilities to
various downstream tasks [26, 30, 31, 32]. However, despite its success in image-level tasks like
image classification, CLIP tends to struggle in dense prediction tasks [17, 26, 6], such as object
detection and semantic segmentation. This originates from CLIP being trained from image-level
supervision being captions, hence exhibits bias towards the global image rather than fine-grained
regions within the image [17]. While non-learnable approaches, such as MaskCLIP [26] show
improvements by slightly modifying the architecture, CLIP still shows limited capabilities in dense
predictions in comparison to its global understanding.

To address this, OWL-ViT [33] directly fine-tunes pre-trained vision and text encoders to downstream
open-vocabulary detection task, and CAT-Seg [6] introduces a cost aggregation scheme for fine-
tuning the encoders of CLIP for semantic segmentation. Alternatively, ZegCLIP [19] and Xu et
al. [3] implement prompt tuning [21, 20] for tuning the image and text encoders of CLIP. Instead of
fine-tuning the full model, they learn prompt tokens that serve as a global prefix for the encoders of
CLIP. While such methods show remarkable results from fine-tuning the encoders of CLIP for dense
downstream tasks, they require densely annotated detection and segmentation data for training.

2.3 Vision foundation models

With the advent of large-scale learning enabled by scalable vision backbone architectures [34, 35]
and vast amounts of data, diverse vision foundation models are emerging in the field of computer
vision. In this regard, self-supervised methods [36, 37, 38, 39] have demonstrated the effectiveness of
its rich visual representations for various downstream tasks. Especially, DINO [14] exerted strengths
in fine-grained semantic recognition [40, 41], making it highly effective for object detection and
image segmentation. Moreover, DINO features have also been demonstrated for yielding fine-grained
masks within the image through applying the k-means clustering with its features [42, 43, 44].

On the other hand, the segment anything model (SAM) [13] has demonstrated its capability for
generating fine-grained, high-quality segmentation masks for any object in an image. Through its self-
annotation pipeline, SAM has collected an unprecedented amount of mask annotation for achieving
its capabilities. While we can freely leverage SAM to obtain detailed masks in any given image, we
mainly utilize the pre-computed masks within the collected dataset, SA-1B. Both DINO and SAM,
however, yield unlabeled masks without semantic labels as both models are also trained without
semantic labels, presenting a challenge for leveraging their masks for achieving dense vision-language
recognition.
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Figure 3: Illustration of our overall framework. We provide illustration of PixelCLIP, utilizing
unlabeled images and masks for fine-tuning the image encoder of CLIP, enabling open-vocabulary
semantic segmentation. We note that the momentum image encoder and the mask decoder are only
leveraged during training, and inference is only done with image and text encoders of CLIP.

3 Methodology

In this section, we first establish our problem formulation of learning dense vision-language alignment
from images paired with masks, generated from vision foundation models. Next, we discuss the
challenges of leveraging masks as supervision for fine-tuning the image encoder of CLIP and finally,
present our methodology of semantic clustering of masks to address the challenges.

3.1 Preliminaries

Given an input image I ∈ RH×W×3, open-vocabulary semantic segmentation [6, 7] aims to label
each pixel within an image with classes given in free-form text. As a training signal, semantic labels
offer a set of S textual descriptions for a semantic class T = {Ti}Si=1 related to I . This can be directly
utilized with the CLIP text encoder EL(·) to obtain text features fT = EL(T ) ∈ RS×d, where d is the
hidden dimension. Dense image features fI = EV (I) ∈ Rh×w×d, where h× w is the output feature
resolution, are then extracted. We finally obtain dense image-text similarity map MIT ∈ Rh×w×S :

MIT (x, y, n) =
fI(x, y) · fT (n)
∥fI(x, y)∥∥fT (n)∥

. (1)

This can be interpreted as soft binary masks predicted from image and text features of CLIP, and be
supervised with binary mask loss Lmask in a pixel-level manner to fine-tune CLIP [6].

3.2 Integrating masks into CLIP features

In this work, we do not have any access to T , but are only given unlabeled masks M ∈ RH×W×N ,
where N denotes the number of masks for the given image I . Hence, we devise methods to predict
masks by incorporating M into CLIP features. We aim to fine-tune the CLIP image encoder EV (·)
through leveraging unlabeled masks M as supervision. Since M is generated from vision foundation
models, e.g. DINO or SAM, this presents us with the challenge of not having any semantic labels.

In order to integrate masks into CLIP, a straightforward approach would be employing the masks M
with the CLIP image feature map fI to obtain per-mask CLIP features. While there could be various
methods to extract regional CLIP features [26, 45, 5], we apply mask pooling over fI to obtain mask
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pooled features fM = MaskPool(fI ,M) ∈ RN×d. Consequently, we can leverage fM to obtain
image-mask similarity map denoted MIM ∈ Rh×w×N :

MIM (x, y, n) =
fI(x, y) · fM (n)

∥fI(x, y)∥∥fM (n)∥
. (2)

This allows us to supervise the model with a binary mask loss Lmask for fine-tuning CLIP with given
image I and unlabeled masks M . In practice, since MIM has the same resolution as the feature map
from the CLIP image encoder fI , we employ a light-weight decoder D to mitigate the resolution
gap between MIM and M , as shown in Fig. 3. This can be written as D : Rh×w → Rh′×w′

, where
h′ × w′ is resolution for the upsampled mask. Therefore, the output of the model can be updated as
M̃ = D(M).

3.3 Semantic clustering of masks

Upon using mask pooled CLIP image features fM to predict MIM , however, we find the masks
generated from DINO and SAM to often over-segment the image, resulting in too small or incomplete
masks as seen in Fig. 2. This would require CLIP to forcefully discriminate regions that are
semantically similar, impeding the training process.

In this regard, we propose to group semantically similar masks into clusters and predict based on
the clusters rather than individual masks. Moreover, we aim to define this cluster globally, which
is shared across the entire training process rather than for each image or iteration. This would be
analogous to constructing pixel-level semantic labels, where a fixed set of classes defined over the
dataset is equivalent to each cluster. However, the difference is that there is no pre-defined set of
classes that we can define the clusters with. While we could heuristically pre-define such classes, we
describe our learnable method for globally clustering masks into semantically meaningful groups.

Online clustering via learnable class prompts. To globally cluster masks into semantic categories,
we propose representing these clusters using CLIP text features as centroids for clustering mask
features. Given that the CLIP text encoder is trained with a broad understanding of natural language
semantics, we expect these clusters to capture meaningful semantics by leveraging its comprehensive
pre-trained knowledge. In this regard, we take a learnable approach, where each cluster is defined
by class-specific learnable prompts fed into the CLIP text encoder. Unlike existing prompt learning
methods, which typically focus on learning a task-specific prefix [20, 21, 3], we aim to learn
prompt tokens that represent each class. For instance, in the sentence “A photo of an object”,
traditional prompting methods would learn the tokens for the “A photo of a” prefix, whereas our
method focuses on learning the token for the “object.”

Specifically, given the number of clusters k, we can define prompt tokens as C ∈ Rk×l×de , where l
is the token length of the prompt and de is the dimension of the token embeddings. From this, we can
utilize the CLIP text encoder EL(·) to obtain a set of class features fC = EL(P ∗, C) ∈ Rk×d in the
form of CLIP text features, where P ∗ is a fixed template for the CLIP text encoder, such as “A photo
of a {} in the scene." While we could assign each mask fM with fC in a winner-takes-all manner,
we desire the classes to encode general semantics across all images. Therefore, we assume that we
can equally divide m masks within a minibatch [18, 14], into k clusters given a sufficient amount of
masks.

Consequently, we aim to find an assignment Q ∈ Rk×m
+ based on the image-text similarity between

the mask pooled features fM and the class text features, which can be defined as:

max
Q∈Q

Tr(Q⊤F⊤
MfC) + εH(Q), s.t. Q ∈ Rk×m

+ , Q⊤
1k =

1

m
1m, Q1m =

1

k
1k, (3)

where FM is the set of all m mask features fM within the minibatch, and 1k denotes the k-dimensional
vector of ones. H is the entropy function, H(Q) = −

∑
ij Qij logQij with ε as a hyperparameter.

The solution Q from Eq. 3 is an assignment matrix defining which of the k clusters each m mask
should belong to, hence ε determines the smoothness of this mapping Q by scaling the entropy
regularization from H . The equipartition constraint, Q⊤

1k = 1
m1m, Q1m = 1

k1k encourages the
class features fC to be selected at least m/k times on average, allowing to learn general concepts
represented by the masks within the dataset. In practice, with the soft assignment relaxation [46], Q
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can be solved as follows:

Q = diag(u) exp
(
F⊤
MfC
ε

)
diag(v), (4)

where u ∈ Rk, v ∈ Rm denote renormalization vectors, which can be efficiently computed by
Sinkhorn-Knopp algorithm [46].

Finally, we can re-write the prediction of our model to be a cosine-similarity map between fI and fC :

MIC(x, y, i) =
fI(x, y) · fC(i)
∥fI(x, y)∥∥fC(i)∥

, (5)

thereby predicting masks for fC(i) being the i-th class feature from fC , which we have obtained
from clustering mask pooled features fM . Accordingly, ground truth masks M are also clustered
according to Q by converting it into hard assignment with the argmax operator [47, 22]. This can be
written as M̄ ∈ Rk×H×W where M̄i is the union of masks assigned into the cluster represented by
i-th learned class fC(i).

Momentum encoder for integrating mask features. Since we jointly optimize the CLIP image
encoder EV (·) as well as the learnable class feature fC , we may experience instability during our
training process, or forgetting of the pre-trained knowledge [48]. To stabilize the training, we keep
a momentum encoder [39, 38] for obtaining fM as seen in Fig. 3. Therefore, we update fM as
fM = MaskPool(ĒV (I),M), where ĒV is the momentum encoder of the CLIP image encoder,
updated with momentum γ. This can be denoted as θ′

V̄
← γθ′

V̄
+ (1 − γ)θV , where θV̄ ′ , θV are

model parameters of ĒV and EV , respectively.

4 Experiments

4.1 Implementation details

For training, we employ per-pixel binary cross-entropy loss as Lmask to jointly train all of the
components [6]. For all our experiments, we use a single text prompt “A photo of {} in the
scene” for P ∗, including for our learnable class prompts while training and for inference, we apply
prompt ensemble strategy [30] with 7 additional prompts originally curated from CLIP [15]. We train
our model on SA-1B [13] dataset, where we randomly sample 5% of the images. We train for 10000
iterations with a batch size of 48 for all experiments. For experiments using masks from DINO, we
obtain masks with k-means clustering where we set k = 16. For experiments using masks from SAM,
we use the unlabeled mask annotation in the SA-1B dataset. Without specification, we report results
on ConvNeXt-B [49] backbone with mask annotation from SAM, which takes approximately 6 hours
to train with 4 NVIDIA A6000 GPUs. We provide more details in the supplementary materials.

4.2 Experimental setting

Following Cha et al. [7], we evaluate our model on zero-shot transfer to semantic segmentation on
the validation sets of COCO-Stuff [50], ADE-20K [51], PASCAL-Context [52], PASCAL VOC [53],
and CityScapes [54]. For CLIP [15], we apply MaskCLIP [26] for ViT backbone for extracting image
features, and remove the global pooling layer for OpenCLIP [55] with ConvNeXt [49] backbone. We
note that we do not apply any post-processing to the predictions and for the compared methods. For
the evaluation metric, we employ the mean Intersection over Union (mIoU).

4.3 Results

Open-vocabulary semantic segmentation. We provide results for quantitative comparisons in
Tab. 1. We first compare with CLIP, and demonstrate remarkable gains in all benchmarks, bringing
in an average of +16.2 mIoU improvement. Since we do not have comparable baselines without
leveraging semantic labels, we further provide a comparison with image-level supervised methods [7,
9, 10]. Surprisingly, PixelCLIP surpasses TCL [7] and SegCLIP [9] in all benchmarks while
using only a fraction of the images without semantic labels. Furthermore, we show competitive
performance compared to SAM-CLIP, which uses not only 40 million image-level semantic labels,
but also leverages the SA-1B dataset on a similar scale to our framework.
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Table 1: Quantitative comparison on open-vocabulary semantic segmentation. We compare
in open-vocabulary semantic segmentation with vision-language models, as well as image-level
supervised methods. *: Images were seen during training. †: Masks from SA-1B [13] were used.

Method Training Dataset Backbone Additional VFM Evaluation Dataset
Labels COCO-St. ADE-150 Context CityScapes VOC

GroupViT [11] CC12M [56], YFCC15M [57] ViT-S/16 - - 15.3 9.2 23.4 11.1 79.7
CLIPpy [25] HQITP-134M [25] ViT-B/16 - - - 13.5 - - 52.2
OVSegmentor [58] CC4M [58] ViT-B/16 - DINO - - 20.4 53.8
CLIP [15] WIT-400M [15] ViT-B/16 - - 16.5 13.2 25.6 14.9 73.9
OpenCLIP [55] LAION-2B [59] ConvNeXt-B - - 12.8 13.1 16.5 16.2 34.8

Training with additional image-level semantic labels
SegCLIP [9] COCO [60], CC12M [56] ViT-B/16 Captions CLIP 26.5* - 24.7 - 52.6
TCL [7] CC3M, CC12M [56] ViT-B/16 Captions CLIP 19.6 14.9 30.3 23.1 77.5
SAM-CLIP [10] Merged-41M [10] ViT-B/16 Captions CLIP, SAM - 17.1 29.2 - 60.6

Training without additional semantic labels
ZeroSeg [28] ImageNet-1K [61] ViT-B/16 - CLIP 20.2 - 20.4 - 40.8

ViT-B/16 - CLIP, DINO 22.2 17.4 34.3 22.9 83.8
ViT-B/16 - CLIP, SAM† 23.6 18.7 37.9 27.2 85.9

ConvNeXt-B - CLIP, DINO 20.2 19.4 32.7 30.0 62.9PixelCLIP (Ours) 5% SA-1B [13] (0.5M)

ConvNeXt-B - CLIP, SAM† 21.4 20.3 35.4 34.8 67.2

Table 2: Quantitative comparison on zero-shot mask classification. We compare the results
for mask classification using ground truth masks and generated masks from ZegFormer [1] and
FC-CLIP [24]. To evaluate zero-shot mask classification from CLIP, we report the results from the
zero-shot branch for both methods.

VLM Method Backbone Evaluation Dataset
COCO-St. ADE-150 Context CityScapes VOC

OpenCLIP [55] Zegformer [1] ConvNeXt-B 15.3 19.1 24.7 26.5 51.8
PixelCLIP (Ours) Zegformer [1] ConvNeXt-B 23.9 (+8.6) 21.5 (+2.4) 38.5 (+13.8) 34.2 (+7.7) 71.5 (+19.7)
OpenCLIP [55] FC-CLIP [24] ConvNeXt-L 37.3 27.4 42.8 35.8 91.4
PixelCLIP (Ours) FC-CLIP [24] ConvNeXt-L 46.8 (+9.5) 30.1 (+2.7) 52.2 (+9.4) 48.1 (+12.3) 90.7 (-0.7)

OpenCLIP [55] Ground Truth ConvNeXt-B 23.8 30.2 31.4 32.8 68.3
PixelCLIP (Ours) Ground Truth ConvNeXt-B 34.2 (+10.4) 34.6 (+4.4) 51.2 (+18.4) 41.4 (+8.6) 85.4 (+17.1)

Zero-shot mask classification. We provide results for evaluating mask classification in Tab. 2. We
consider ZegFormer [1] and FC-CLIP [24] as baselines since they first predict masks, then employ
CLIP as a zero-shot mask classifier within their framework, and also provide results with ground-truth
masks to simulate having oracle mask predictions. For all methods, we apply masked pooling to
CLIP image feature map to classify masks. For ZegFormer [1] and FC-CLIP [24], reported results
are only from the zero-shot prediction branch to solely ablate our gains. We highlight that PixelCLIP
can be readily applied to existing frameworks that leverage CLIP as a zero-shot mask classifier, and
bring instantaneous improvements by simply replacing the model and weights of CLIP.

Qualitative results. We provide qualitative results for open-vocabulary semantic segmentation
in Fig. 4 compared with results from CLIP, highlighting the dense open-vocabulary recognition
capabilities of our framework. We further provide qualitative results in the supplementary materials.

4.4 Ablation studies
In Tab. 3, we show ablation studies on open-vocabulary semantic segmentation to validate our design
choices. We report results without prompt ensembling for ablations, and also report results from
OpenCLIP [55] as a baseline.

Component analysis. In Tab. 3 (a), we provide results for ablating our key components. Notably,
we observe that without global semantic clustering of masks, the framework collapses and loses
the pre-trained knowledge of CLIP. This validates the challenge presented by leveraging unlabeled
masks and demonstrates the crucial role of our proposed clustering approach. Moreover, we observe
constant improvements over all datasets with our learnable class prompt, proving our approach of
leveraging the text encoder of CLIP to define the clusters in the form of prompt learning. We also
observe constant gains with the momentum encoder for extracting mask pooled features fM .

Number of clusters. In Tab. 3 (b), we compare the results of the variants of the proposed method by
varying the number of clusters k. We find that scaling k does not necessarily guarantee performance
boosting, but it generally improves until k is set to 64 and tends to degrade as k grows. Considering
that with an extremely large number for k, we can assign each of the masks to individual clusters(e.g.
1 billion for SA-1B.) This scenario would virtually be identical to not having semantic clustering as
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(a) Ours (b) CLIP
Figure 4: Comparison between PixelCLIP and CLIP. We provide qualitative comparison on ADE-
20K [51] dataset with PixelCLIP and CLIP. We demonstrate the dense visual recognition capabilities
achieved from fine-tuning CLIP, whereas CLIP shows results with significant noise.

Table 3: Ablation studies. We show results on open-vocabulary semantic segmentation for validating
our design choices. We also report results from OpenCLIP [55] as baseline in the results.

Component Evaluation Dataset
COCO ADE-150 Context CityScapes VOC

Baseline 12.8 13.1 16.5 16.2 34.8

Ours 21.1 20.2 34.2 33.2 66.0
w/o Semantic Clustering 0.8 2.1 4.2 4.4 6.0
w/o CLIP Text Encoder 17.9 18.5 29.9 28.9 53.5
w/o Class Prompt 18.2 18.8 30.1 28.1 54.4
w/o Momentum 19.4 18.5 28.8 27.2 58.2

(a) Component analysis. We validate the core components
of our framework by ablating each components. Notably,
global clustering of masks shows its importance for facili-
tating the framework.

k
Evaluation Dataset

COCO ADE-150 Context CityScapes VOC

Baseline 12.8 13.1 16.5 16.2 34.8

32 19.8 19.4 33.0 31.3 60.5
64 21.1 20.2 34.2 33.2 66.0
128 21.0 20.3 33.5 30.1 64.1
256 21.3 20.4 33.6 30.0 64.1
512 21.2 20.2 32.7 29.8 62.7

(b) Number of clusters. For varying k, we find
that scaling k larger than 64 does not show much
improvements, while k = 32 also show competi-
tive results.

l
Evaluation Dataset

COCO ADE-150 Context CityScapes VOC

Baseline 12.8 13.1 16.5 16.2 34.8

1 20.2 19.7 32.7 30.8 64.5
4 21.1 20.2 34.2 33.2 66.0
10 20.4 19.6 33.2 30.2 63.3
20 19.9 19.7 32.6 33.8 62.8

(c) Length of learnable prompt token. For varying
l, we find that l = 4 shows best overall performance.

Text. Evaluation Dataset
COCO ADE-150 Context CityScapes VOC

Baseline 12.8 13.1 16.5 16.2 34.8

Ours 21.1 20.2 34.2 33.2 66.0
COCO 19.5 17.7 30.0 24.8 63.3

(d) Effects of utilizing learnable classes. We com-
pare our method of learnable class prompts to having
fixed set of classes from COCO-Stuff [50].

seen in Table. 3 (a), and progressively growing k would slowly converge to this scenario. We further
provide analysis in 4.5, studying the different aspects from varying k.

Length to represent learnable class prompts. Tab. 3 (c) compares the effects of varying the length
of the learnable class prompt, l. We find that l = 1 shows lower scores in comparison to other lengths.
We can interpret this as only describing a class with a single word, whereas having multiple words
would better describe the depicted class. However, for l = 4 and larger, we find that increasing l does
not result in a gain of performance, hence, we adopt l = 4 as default.

Effects of learnable prompt token. Finally, we compare PixelCLIP to having a pre-defined set
of classes instead of using learnable prompt tokens. Specifically, we use 171 classes from COCO-
Stuff [50], and do not apply online clustering for assignment when utilizing classes from COCO-Stuff,
as it already yields text features with semantic meanings. We find apparent improvements over all
the datasets as shown in Tab. 3 (d). We speculate that since the classes defined in COCO-Stuff are
heuristically chosen, it is hard to ideally encompass various semantics and concepts that may appear
in images, hence restricting the perception of the model to the finite set of classes.
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(a) 𝑘 = 64 (b) 𝑘 = 128 (c) 𝑘 = 64 (d) 𝑘 = 128

learned
init
COCO-St.

Figure 5: Visualization of learned class prompts. We visualize the text features from our learned
class prompts, as well as text features from classnames of COCO-Stuff with t-SNE visualization in
(a-b). We also visualize images inferenced with the learned class prompts in (c-d).

4.5 Analysis

Learnable class prompt. We further analyze the learned class prompt in Fig. 5 (a-b) with t-SNE
visualization on the text features encoded from the learned class prompts, as well as text features
obtained from class names of COCO-Stuff. Since we initialize the class prompt tokens as random
tokens, we observe that they are in a skewed distribution in the initial state. However, the learned
prompts show that they are well-dispersed among the text features from COCO-Stuff, indicating that
the class prompts have well-learned diverse semantic concepts within the text features. We observe
well-distributed features both for k = 64 and k = 128.

Since the learned prompts should act as implicit class names, we visualize the results from inference
with learned class prompts in Fig. 5 (c-d). Although both k = 64 and k = 128 show similar
performance when evaluated, we observe that the prompts have learned more fine-grained semantics
for k = 128. We generally observe human parts to be well distinguished; this could come from the
SA-1B dataset, as there are numerous images with fine-grained masks representing human parts as
annotations.

(a) ! = 64 (b) ! = 128

Figure 6: Visualization of interpreting learned text prompt. We provide visualization on results
for predicting with learned class prompts, then mapping the results to classes in the dataset with the
highest similarity to the prompt.

Interpreting learned classes. Considering the learned class prompts represent semantic concepts,
we further study the learned embeddings by mapping each class embeddings to class names in
COCO-Stuff with the highest cosine-similarity score. Fig. 6 shows results when we first inference
the image features with learned class prompts, then map the results with the closest COCO classes.
We can observe that with k = 128, as the prompt learns more diverse semantics, we observe more
accurately mapped classes. However, we still see predictions with large disparity to the actual ground
truth. We leave a more in-depth analysis of the learned classes for future investigation.

5 Conclusion

In this paper, we introduced PixelCLIP, a framework for leveraging unlabeled images and masks for
fine-tuning the pre-trained vision-language models for open-vocabulary semantic segmentation. To
address the unique challenges posed by incorporating unlabeled masks generated by vision foundation
models into our framework, we propose global semantic clustering of the masks, with learnable class
prompts to represent each cluster. We demonstrated PixelCLIP to show remarkable improvements to
CLIP and its applicability to existing methods, providing instantaneous improvements, as well as
surpassing methods that leverage image-level semantic labels such as image captions.
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Appendix

A Further Implementation Details

We set γ = 0.999, input resolution as H = W = 640, which results in h = w = 20, and set
h′ = w′ = 80 for ConvNeXt [49] backbones. For ViT [62] backbones, we set H = W = 320,
which also results in h = w = 20. For global clustering, we set ε = 1 for ConvNeXt backbones
and ε = 0.01 for ViT backbones. We implement our work using PyTorch [63] and Detectron2 [64].
AdamW [65] optimizer is used with a learning rate of 2 · 10−4 for the decoder, 2 · 10−5 for the
prompt tokens and 2 · 10−6 for CLIP, with weight decay set to 10−4. Prompt tokens are initialized
as random word tokens with l = 4, and k = 64 as default. We use GPU implementation [66] of
k-means clustering for our experiments with DINO masks. For EV , we apply CutOut [67] and color
augmentations [68] during training. For the prompt ensemble strategy during inference, we use the
prompts curated originally from CLIP [15] in their repository, which results in total of 8 text prompt
as follows:

“itap of a {}.”,

“a bad photo of the {}.”,

“a origami {}.”,

“a photo of the large {}.”,

“a {} in a video game.”,

“art of the {}.”,

“a photo of the small {}.”,

“a photo of a {} in the scene”.

B Additional Experiments

Table 4: Quantitative results with various backbones. We show results on open-vocabulary
semantic segmentation of various CLIP backbones with the addition of ViT-B from SigLIP [69] and
ConvNeXt-L.

Method Backbone Evaluation Dataset
COCO-St. ADE-150 Context CityScapes VOC

SigLIP [69] ViT-B/16 [62] 12.4 11.8 18.3 19.2 46.8
PixelCLIP (Ours) ViT-B/16 [62] 20.0 (+7.6) 19.2 (+7.4) 33.1 (+14.8) 31.6 (+12.4) 72.3 (+25.5)
CLIP [26] ViT-B/16 [62] 16.5 13.2 25.6 14.9 73.9
PixelCLIP (Ours) ViT-B/16 [62] 21.4 (+4.9) 16.7 (+3.5) 34.9 (+9.3) 23.8 (+8.9) 83.1 (+9.2)
OpenCLIP [55] ConvNeXt-B [49] 12.8 13.1 16.5 16.2 34.8
PixelCLIP (Ours) ConvNeXt-B [49] 21.1 (+8.3) 20.2 (+7.1) 34.2 (+17.7) 33.2 (+17.0) 66.0 (+31.2)
OpenCLIP [55] ConvNeXt-L [49] 16.9 15.2 22.9 17.1 57.2
PixelCLIP (Ours) ConvNeXt-L [49] 24.8 (+7.9) 22.6 (+7.4) 39.4 (+16.5) 34.3 (+17.2) 78.9 (+21.7)

B.1 Results on Different Backbones

In Tab. 4, we show results for PixelCLIP when applied to different backbones. We note that since
the ViT backbone has a larger output feature resolution scale compared to ConvNeXt models, we
set the input image resolution to match the output feature resolution, and report results without
prompt ensembling. In general, we observe noticeable gains across all backbones, with CLIP ViT-
B/16 outperforming ConvNeXt-B on several datasets. Through testing with various pre-trained
CLIP models, we demonstrate that our method can effectively fine-tune CLIP for dense prediction
regardless of the backbone architecture.
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Table 5: Additional experiments on prompt ensembling. We show results on open-vocabulary
semantic segmentation with prompt ensembling being used during only training, only inference, or
both. The default setting of prompt ensembling only being used during inference is highlighted in
gray.

Prompt Ensembling Evaluation Dataset
Training Inference COCO-St. ADE-150 Context CityScapes VOC

21.4 16.7 34.9 23.8 83.1
✓ 23.6 (+2.2) 18.7 (+2.0) 37.9 (+3.0) 27.2 (+3.4) 85.9 (+2.8)

✓ 21.6 (+0.2) 17.1 (+0.4) 35.1 (+0.2) 24.9 (+1.1) 82.9 (-0.2)
✓ ✓ 23.7 (+2.3) 19.2 (+2.5) 37.9 (+3.0) 28.1 (+4.3) 85.5 (+2.4)

B.2 Analysis on Prompt Ensembling

In Tab. 5, we show results with prompt ensembling being applied during only training, only inference,
and both. We report results with ViT-B/16 using SA-1B masks as supervision. Although prompt
ensembling does bring slight gains when enabled during training, the computation for optimizing
learnable class prompts scales along with the number of prompts used, increasing the training time
and the memory consumption. On the other hand, applying prompt ensembling during inference only
adds negligible cost as they can be computed once and be cached, but shows much significant gains
compared to when applied training. Therefore, we adopt prompt ensemlbing only during inference,
but noticing that the performance can be maximized with better prompts during training. In this
regard we can better results with better prompt design or a learnable prefix to accompany the learnable
class prompts, which we leave for future investigation.

B.3 Additional Ablation Studies

Table 6: Additional ablation studies. We show results on open-vocabulary semantic segmentation
with a larger number of clusters and different training datasets.

γ
Evaluation Dataset

COCO ADE-150 Context CityScapes VOC

Baseline [55] 12.8 13.1 16.5 16.2 34.8

0.99 19.9 19.5 32.5 29.5 62.6
0.999 21.1 20.2 34.2 33.2 66.0
0.9999 20.4 19.7 32.0 29.9 63.0

(a) Varying momentum γ. We show additional re-
sults for varying γ for the momentum update.

Dataset Evaluation Dataset
COCO ADE-150 Context CityScapes VOC

Baseline [55] 12.8 13.1 16.5 16.2 34.8

COCO-St. [50] 24.1 21.9 36.8 30.2 71.0
SA-1B [13] 21.1 20.2 34.2 33.2 66.0

(b) Different training dataset. We show results
for leveraging ground-truth masks from COCO-Stuff
while removing its class labels.

B.3.1 Ablation on the momentum update rate γ

In Tab. 6 (a), we show results for varying γ for the momentum update. While having the momentum
encoder generally shows improvements, we find γ = 0.999 to show the best results for updating the
momentum encoder.

B.3.2 Ablation on training dataset

In Tab. 6 (b), we show results for training with mask annotation from COCO-Stuff [50]. For
COCO-Stuff, we remove the ground truth class labels and utilize them as unlabeled masks, and
other hyperparameters are set identically with k = 64. Although the masks from COCO-Stuff
show better results across all datasets, we highlight that the SA-1B [13] dataset mostly consists of
automatically generated masks from SAM, whereas COCO-Stuff has human annotated masks from
expert annotators.
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(a) 𝑘 = 64 (b) 𝑘 = 128 (c) 𝑘 = 256

Figure 7: Visualization on COCO-Stuff with learned class prompts. We provide results with
learned classes with different k up to 256.

(a) Ours (b) CLIP

Figure 8: Visualization on ADE-20k We provide qualitative comparison on ADE-20K [51].

C Additional Qualitative Results

We provide qualitative results of visualization on ADE-20K [51], PASCAL-Context [52] in Fig. 8
and Fig. 9.

D Additional Visualization

In Fig. 7, we show visualization on COCO-Stuff by classifying the image features with our learned
class prompts for varying k. From the first and the second row, we can observe that with larger
numbers of k, different parts of human are segmented into fine-grained regions whereas k = 64 has
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(a) Ours (b) CLIP

(a) Ours (b) CLIP

Figure 9: Visualization on PASCAL-Context. We provide qualitative comparison on PASCAL-
Context [52].

more coarse regions. Especially for k = 256, in the second row, we observe the glasses, hair, and
hands all classified into different classes with our learned prompt.

On the other hand, we also observe cases where a small number of k struggles to differentiate visual
concepts in the last row, where the animals are partially grouped with k = 64 and show better groups
for k = 128 and k = 256. This could indicate that with only a small number of clusters, several
fine-grained visual concepts that may not be seen often in the dataset to be grouped as a whole,
whereas independent clusters could be assigned with a larger number of k, allowing fine-grained
recognition of semantics.

E Limitations

Although we aim to fine-tune the image encoder of CLIP for adapting to dense predictions, we
initialize the mask encoder within our framework with pre-trained weights of CLIP, which yields poor
results for classifying masks when applying mask pooling to its features. Consequently, the noisy
mask features in the earlier stage of training may result in sub-optimal performance. While there
could be alternative methods to extract per-mask CLIP image features, we consider mask pooling to
be sufficient to show meaningful improvements to CLIP and consider such exploration for future
directions.

F Broader Impact

Our framework facilitates open-vocabulary semantic segmentation through leveraging vision-
language models, hence the recognition capabilities of our method rely on the pre-trained knowl-
edge of the vision-language models. Considering that large-scale pre-trained vision-language mod-
els [15, 16, 55] leverage web-crawled data within its training, the models may exhibit wrongful
behaviors from bias or corrupted data from the internet which calls for future research to address.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We verify our claims in L54-L59 experimentally in Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in Section E.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We do not involve theory assumption and proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide exhaustive details in Section 4.1 in the main paper, as well as
further details in Section A in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We provide exhaustive details in Section 4.1 in the main paper, as well as
further details in Section A in the supplementary materials for reproducing the experimental
results. We are committed to releasing our code upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide exhaustive details in Section 4.1 in the main paper, as well as
further details in Section A in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not report error bars, but we fix the random seed to minimize the
stochasticity for all of our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the resources and training time of our method in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Anonymity is kept as shown in the first page.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss broader impacts in Section F in the supplementary material.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have used only publicly available datasets. We have cited the original
authors and respected the respective licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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